Saturday 14 January 2012

Sleep

0

Sleep 

Sleep is a naturally recurring state characterized by reduced or absent consciousness, relatively suspended sensory activity, and inactivity of nearly all voluntary muscles.[1] It is distinguished from quiet wakefulness by a decreased ability to react to stimuli, and is more easily reversible than being in hibernation or a coma. Sleep is also a heightened anabolic state, accentuating the growth and rejuvenation of the immune, nervous, skeletal and muscular systems. It is observed in all mammals, all birds, and many reptiles, amphibians, and fish.
The purposes and mechanisms of sleep are only partially clear and are the subject of intense research.[2] Sleep is often thought to help conserve energy,[3][4] but actually decreases metabolism only about 5–10%.[3][4] Hibernating animals need to sleep despite the hypometabolism seen in hibernation, and in fact they must return from hypothermia to euthermy in order to sleep, making sleeping "energetically expensive."[5]

Sleep stages
In mammals and birds, sleep is divided into two broad types: rapid eye movement (REM) and non-rapid eye movement (NREM or non-REM) sleep. Each type has a distinct set of associated physiological, neurological, and psychological features. The American Academy of Sleep Medicine (AASM) further divides NREM into three stages: N1, N2, and N3, the last of which is also called delta sleep or slow-wave sleep (SWS).[6]


Hypnogram showing sleep cycles from midnight to 6.30 am, with deep sleep early on. There is more REM (marked red) before waking.


Stage N3 sleep; EEG highlighted by red box. Thirty seconds of deep sleep, here with greater than 50% delta waves.


REM sleep; EEG highlighted by red box; eye movements highlighted by red line. Thirty seconds of sleep.
Sleep proceeds in cycles of REM and NREM, the order normally being N1 → N2 → N3 → N2 → REM. There is a greater amount of deep sleep (stage N3) earlier in the sleep cycle, while the proportion of REM sleep increases later in the sleep cycle and just before natural awakening.
The stages of sleep were first described in 1937 by Alfred Lee Loomis and his coworkers, who separated the different electroencephalography (EEG) features of sleep into five levels (A to E), which represented the spectrum from wakefulness to deep sleep.[7] In 1953, REM sleep was discovered as distinct, and thus William Dement and Nathaniel Kleitman reclassified sleep into four NREM stages and REM.[8] The staging criteria were standardized in 1968 by Allan Rechtschaffen and Anthony Kales in the "R&K sleep scoring manual."[9] In the R&K standard, NREM sleep was divided into four stages, with slow-wave sleep comprising stages 3 and 4. In stage 3, delta waves made up less than 50% of the total wave patterns, while they made up more than 50% in stage 4. Furthermore, REM sleep was sometimes referred to as stage 5.
In 2004, the AASM commissioned the AASM Visual Scoring Task Force to review the R&K scoring system. The review resulted in several changes, the most significant being the combination of stages 3 and 4 into Stage N3. The revised scoring was published in 2007 as The AASM Manual for the Scoring of Sleep and Associated Events.[10] Arousals and respiratory, cardiac, and movement events were also added.[11][12]
Sleep stages and other characteristics of sleep are commonly assessed by polysomnography in a specialized sleep laboratory. Measurements taken include EEG of brain waves, electrooculography (EOG) of eye movements, and electromyography (EMG) of skeletal muscle activity. In humans, each sleep cycle lasts from 90 to 110 minutes on average,[13] and each stage may have a distinct physiological function. This can result in sleep that exhibits loss of consciousness but does not fulfill its physiological functions (i.e., one may still feel tired after apparently sufficient sleep).
Scientific studies on sleep having shown that sleep stage at awakening is an important factor in amplifying sleep inertia. Alarm clocks involving sleep stage monitoring appeared on the market in 2005.[14] Using sensing technologies such as EEG electrodes or accelerometers, these alarm clocks are supposed to wake people only from light sleep.

NREM sleep
Main article: Non-rapid eye movement sleep
According to the 2007 AASM standards, NREM consists of three stages. There is relatively little dreaming in NREM.
Stage N1 refers to the transition of the brain from alpha waves having a frequency of 8–13 Hz (common in the awake state) to theta waves having a frequency of 4–7 Hz. This stage is sometimes referred to as somnolence or drowsy sleep. Sudden twitches and hypnic jerks, also known as positive myoclonus, may be associated with the onset of sleep during N1. Some people may also experience hypnagogic hallucinations during this stage. During N1, the subject loses some muscle tone and most conscious awareness of the external environment.
Stage N2 is characterized by sleep spindles ranging from 11 to 16 Hz (most commonly 12–14 Hz) and K-complexes. During this stage, muscular activity as measured by EMG decreases, and conscious awareness of the external environment disappears. This stage occupies 45–55% of total sleep in adults.
Stage N3 (deep or slow-wave sleep) is characterized by the presence of a minimum of 20% delta waves ranging from 0.5–2 Hz and having a peak-to-peak amplitude >75 μV. (EEG standards define delta waves to be from 0 to 4 Hz, but sleep standards in both the original R&K, as well as the new 2007 AASM guidelines have a range of 0.5–2 Hz.) This is the stage in which parasomnias such as night terrors, nocturnal enuresis, sleepwalking, and somniloquy occur. Many illustrations and descriptions still show a stage N3 with 20–50% delta waves and a stage N4 with greater than 50% delta waves; these have been combined as stage N3.

REM sleep
Main article: Rapid eye movement sleep
Rapid eye movement sleep, or REM sleep, accounts for 20–25% of total sleep time in most human adults. The criteria for REM sleep include rapid eye movements as well as a rapid low-voltage EEG. Most memorable dreaming occurs in this stage. At least in mammals, a descending muscular atonia is seen. Such paralysis may be necessary to protect organisms from self-damage through physically acting out scenes from the often-vivid dreams that occur during this stage.

Timing


The human biological clock
Sleep timing is controlled by the circadian clock, sleep-wake homeostasis, and in humans, within certain bounds, willed behavior. The circadian clock—an inner timekeeping, temperature-fluctuating, enzyme-controlling device—works in tandem with adenosine, a neurotransmitter that inhibits many of the bodily processes associated with wakefulness. Adenosine is created over the course of the day; high levels of adenosine lead to sleepiness. In diurnal animals, sleepiness occurs as the circadian element causes the release of the hormone melatonin and a gradual decrease in core body temperature. The timing is affected by one's chronotype. It is the circadian rhythm that determines the ideal timing of a correctly structured and restorative sleep episode.[15]
Homeostatic sleep propensity (the need for sleep as a function of the amount of time elapsed since the last adequate sleep episode) must be balanced against the circadian element for satisfactory sleep.[16] Along with corresponding messages from the circadian clock, this tells the body it needs to sleep.[17] Sleep offset (awakening) is primarily determined by circadian rhythm. A person who regularly awakens at an early hour will generally not be able to sleep much later than his or her normal waking time, even if moderately sleep-deprived.
Sleep duration is affected by the gene DEC2. Some people have a mutation of this gene; they sleep two hours less than normal. Neurology professor Ying-Hui Fu and her colleagues bred mice that carried the DEC2 mutation and slept less than normal mice.[18][19]

Optimal amount in humans
[edit]Adult
The optimal amount of sleep is not a meaningful concept unless the timing of that sleep is seen in relation to an individual's circadian rhythms. A person's major sleep episode is relatively inefficient and inadequate when it occurs at the "wrong" time of day; one should be asleep at least six hours before the lowest body temperature.[20] The timing is correct when the following two circadian markers occur after the middle of the sleep episode and before awakening:[21]
maximum concentration of the hormone melatonin, and
minimum core body temperature.
For more information on the human circadian rhythm and body temperature, see Determining the human circadian rhythm (in the article Circadian rhythm).
Human sleep needs can vary by age and among individuals, and sleep is considered to be adequate when there is no daytime sleepiness or dysfunction. Moreover, self-reported sleep duration is only moderately correlated with actual sleep time as measured by actigraphy,[22] and those affected with sleep state misperception may typically report having slept only four hours despite having slept a full eight hours.[23]
A University of California, San Diego psychiatry study of more than one million adults found that people who live the longest self-report sleeping for six to seven hours each night.[24] Another study of sleep duration and mortality risk in women showed similar results.[25] Other studies show that "sleeping more than 7 to 8 hours per day has been consistently associated with increased mortality," though this study suggests the cause is probably other factors such as depression and socioeconomic status, which would correlate statistically.[26] It has been suggested that the correlation between lower sleep hours and reduced morbidity only occurs with those who wake after less sleep naturally, rather than those who use an alarm.


Main health effects of sleep deprivation,[27] indicating impairment of normal maintenance by sleep
Researchers at the University of Warwick and University College London have found that lack of sleep can more than double the risk of death from cardiovascular disease, but that too much sleep can also be associated with a doubling of the risk of death, though not primarily from cardiovascular disease.[28][29] Professor Francesco Cappuccio said, "Short sleep has been shown to be a risk factor for weight gain, hypertension, and Type 2 diabetes, sometimes leading to mortality; but in contrast to the short sleep-mortality association, it appears that no potential mechanisms by which long sleep could be associated with increased mortality have yet been investigated. Some candidate causes for this include depression, low socioeconomic status, and cancer-related fatigue... In terms of prevention, our findings indicate that consistently sleeping around seven hours per night is optimal for health, and a sustained reduction may predispose to ill health."
Furthermore, sleep difficulties are closely associated with psychiatric disorders such as depression, alcoholism, and bipolar disorder.[30] Up to 90% of adults with depression are found to have sleep difficulties. Dysregulation found on EEG includes disturbances in sleep continuity, decreased delta sleep and altered REM patterns with regard to latency, distribution across the night and density of eye movements.[31]

Hours by age
Children need more sleep per day in order to develop and function properly: up to 18 hours for newborn babies, with a declining rate as a child ages.[17] A newborn baby spends almost 9 hours a day in REM sleep. By the age of five or so, only slightly over two hours is spent in REM.[32]
Age and condition Average amount of sleep per day
Newborn up to 18 hours
1–12 months 14–18 hours
1–3 years 12–15 hours
3–5 years 11–13 hours
5–12 years 9–11 hours
Adolescents 9–10 hours[33]
Adults, including elderly 7–8 hours
Pregnant women 8(+) hours

Sleep debt
Main article: Sleep debt
Sleep debt is the effect of not getting enough rest and sleep; a large debt causes mental, emotional and physical fatigue.
Sleep debt results in diminished abilities to perform high-level cognitive functions. Neurophysiological and functional imaging studies have demonstrated that frontal regions of the brain are particularly responsive to homeostatic sleep pressure.[34]
Scientists do not agree on how much sleep debt it is possible to accumulate; whether it is accumulated against an individual's average sleep or some other benchmark; nor on whether the prevalence of sleep debt among adults has changed appreciably in the industrialized world in recent decades. It is likely that children are sleeping less than previously in Western societies.[35]

Genetics
It is suspected that a considerable amount of sleep-related behavior, such as when and how long a person needs to sleep, is regulated by our genetics. Researchers have discovered some evidence that seems to support this assumption.

0 comments:

Post a Comment